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In this paper, we address the impact of uncertainty introduced when the experts complete pairwise com-
parison matrices, in the context of multi-criteria decision making. We first discuss how uncertainty can
be quantified and modeled and then show how the probability of rank reversal scales with the number of
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obtain an estimate of the credibility of the outcome.
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1. Introduction

Decision making (Bhushan & Rai, 2004; Yager, 2004) consists of
choosing a specific course of action between several alternatives and
is encountered in countless areas of human activity. In many circum-
stances, where complex decisions need to be made involving high
stakes, it is desirable to proceed in a structured and methodolog-
ical manner, rather than simply rely on the skills and intuition of
a single decision maker. Multi-criteria decision analysis (MCDA) or
multi-criteria decision making (MCDM) (Triantaphyllou, 2000) aim
at facilitating decision makers in complicated situations where nu-
merous and sometimes conflicting criteria or factors have to be taken
into account.

MCDM is further classified into multi-objective decision mak-
ing (MODM) and multi-attribute decision making (MADM) (Pohekar
& Ramachandran, 2004). In MODM, a set of objective functions is
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optimized subject to constraints and hence the efficient solutions in
a set of alternatives are sought. MODM typically requires the solution
of a series of mathematical programming models in order to reveal
implicitly defined efficient solutions. On the other hand, in MADM,
a small number of pre-determined alternatives are to be evaluated
under a common set of criteria and the best alternative is usually se-
lected by making comparisons between alternatives with respect to
each criterion.

A fundamental problem in decision making is to grade the impor-
tance of a set of alternatives and assign a weight to each of them.
The importance of alternatives usually depends on several criteria
which can be evaluated within the decision making framework in
which pairwise comparisons (PWC) are an essential ingredient (Saaty
& Vargas, 2001). In the context of MADM, PWC enables the ranking of
alternatives by allowing the experts to compare the various criteria
or alternatives in pairs instead of assigning their priorities in a sin-
gle step (Saaty, 1977). This reduces the influence of subjective point
of views, associated with eliciting weights directly. PWC is usually
performed in MADM methods such as the Analytic Hierarchy Process
(AHP) (Saaty, 2003), the Weighted Product Method (WPM) (Chang &
Yeh, 2001), the preference ranking organization method for enrich-
ment evaluation (PROMETHEE) (Brans, Vincke, & Mareschal, 1986),
the Analytic Network Process (ANP) (Saaty, 2004) and so on. The aim
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of this paper is to consider the influence of uncertainty in PWC and
how the credibility of the outcome can be assessed. Although the
focus is on PWC alone, the results have some implications on the
applications of MADM frameworks, particularly in the number of ex-
perts that are required and how the credibility of key parts of the
framework can be ascertained.

In recent years, PWC has been used either as a stand-alone method
or as part of complex MADM frameworks on several areas includ-
ing government (Huanga, Chub, & Chiang, 2008), business (Lee &
Kozar, 2006), industry (Chan, Lau & Ip, 2006), healthcare (Liberatore &
Nydick, 2008), technology (Gerdsri & Kocaoglu, 2007), education
(Zahedi, 1986), communications (Dede, Kamalakis, & Varoutas, 2011a,
2011b; Dede, Varoutas, Kamalakis, Fuentetaja, & Javaudin, 2010), agri-
culture (Abildtrup et al., 2006) and energy planning (Kok & Lootsma,
1985). The method itself has also been the focus of extensive research
in the field of decision making. Recently in Fan and Liu (2010), a form
of uncertain preference information, called ordinal interval numbers,
was used in pairwise comparisons in order to rank the alternatives.
In Doumpos and Zopounidis (2004), the issue of how pairwise com-
parisons can be used for the classification of alternatives in differ-
ent classes of preference is discussed. The problem of deriving the
weights from the pairwise comparison matrices using several alter-
native approaches is studied in Barzilai (1997) and Choo (2004) . In
Kwiesielewicz and Van Uden (2004) several issues concerning the
inconsistency of the pairwise comparison matrix and its impact on
the decision making process are highlighted. In addition, fuzzy pair-
wise comparison for solving the decision making problems has been
proposed in Boenderb, Graan, and Lootsma (1989), Deng (1999) and
Mikhailov (2005) . In Marimin, Umano, Hatono, and Tamura (1998)
linguistic labels are used in order to express fuzzy preference relations
in pairwise decision problems. Moreover, Shiraishi, Tsuneshi, and
Motomasa (1998) dealt with the properties of the principal eigen-
vector of PWC matrices.

The influence of uncertainty due to the imperfect and subjective
expert judgments is of paramount importance when considering the
credibility of the outcome of a decision making process. Several stud-
ies have attempted to shed some light on this issue in the context
of PWC. For example, in Carmone, Karab, and Zanakis (1997), Monte
Carlo simulations were performed to study the Incomplete Pairwise
Comparisons (IPC) algorithm and investigate the effect of missing
information in pairwise comparisons. Furthermore, in Aull-Hyde,
Erdogan, and Duke (2006) it has been shown that given a sufficiently
large group size, the consistency of the aggregate comparison matrix
is guaranteed regardless of the measures used to estimate the con-
sistency of the individual matrices, if the geometric mean method is
used to estimate the weights. Moreover, in Hahn (2003) a stochastic
characterization of the pairwise comparison judgments is provided,
while statistical models for deriving the weights of the alternatives
using Markov chain Monte Carlo are also presented. Furthermore,
Farkas (2007) theoretically studied the conditions for rank reversal
on perturbing the PWC matrices, while Chen and Kocaoglu (2008)
also studied the rank reversal problem in this particular context, and
came up with an algorithm to analyze the sensitivity of hierarchical
decision models.

The main purpose of our work is to provide a suitable character-
ization of the impact of uncertainty in PWC. A first step in order to
characterize the impact of uncertainty in PWCs, is to identify a suit-
able measure for quantifying its effects. Assume for instance that N
different alternatives are pairwise compared by M experts, each with
possibly a different view on the ranking of the alternatives. As dis-
cussed further below in Section 2.1, PWC aims at providing an average
ranking, encompassing all these diverse opinions of the experts. It is
of course natural to expect that the credibility of the overall process
will be increased as the size of the expert group increases. Therefore,
one possible way of measuring the trustworthiness of the results is
to define the probability of rank reversal (Pgg) (Saaty & Vargas, 1984)

as follows: Let Wy, ..., Wy be the weights calculated by the PWC
in the case of a very large group of experts (M — o). In a practical
situation where M is finite, uncertainty may undermine the PWC and
the calculated weights w;, may turn out different than W). Uncer-
tainty can be due to the difference of opinion among the experts or
inconsistent pairwise comparisons. The probability of rank reversal is
formally defined as:

Prr = P {the ranking obtained by w;,
1 <i < N, isdifferent than that of W;} (1)

A high Pgg implies that the outcome of the PWC in question is not
trustworthy and could therefore lead to incorrect decision making.
There are two important issues that need to be addressed concerning
Prr:

a) How does Pgg relate to the number of experts M? An obvious
way to reduce the effect of uncertainty is simply to increase M,
but from a practical point of view, this is not a trivial task. It
is usually difficult to locate many experts within a single orga-
nization or even in the wider public with sufficient expertise
that would be willing to participate in the PWC surveys. On
the other hand, there is no clear answer to the question of how
many more experts need to participate in order to considerably
reduce the uncertainty of the outcome. Say for example, that
there are already M = 10 experts participating in the endeavor.
How much is there to be gained in terms of Pgg by doubling or
even quadrupling the size of the group of experts?

b) How can Pgg be estimated from actual expert judgments in
practice? When applying PWC in a specific decision making
problem, one has access to the elements of a limited number
of pairwise comparison matrices P(™) (where 1 < m < M).
So the question becomes whether one can extract any kind
of information regarding Pgg and hence the credibility of the
results based on just the elements of P(™),

The present paper attempts to deal with both points above. We
first discuss a model for incorporating uncertainty in PWC and con-
sider a suitable measure for quantifying the uncertainty level. We
then discuss how Pgg varies with the group size M depending on
the uncertainty level and extract several interesting conclusions from
this variation. It is shown that there is not much sense in using more
than M = 15 experts in the decision making process because the rate
of decrease of Pgg is already small for M > 15. We then address the
issue of how Pgg can be estimated from just the values of the pair-
wise comparison matrices P(™) obtained by the experts. Given this
information, we discuss a numerical method for estimating Pgg based
on Monte Carlo simulation. The results indicate that for a sufficiently
large group of experts, one can obtain a reasonable approximation to
the actual value of Pgg.

The rest of the paper is organized as follows: In Section 2, we
briefly summarize the PWC method laying the theoretical founda-
tions for incorporating uncertainty and present the model used in
our simulations. In Section 3, the results obtained when applying the
proposed model are presented and the convergence of the Pgg is ex-
amined, considering the impact of various aspects which may affect
the estimation of probability of rank reversal, such as varying un-
certainty level among the experts, alternative preference scales and
weight estimation methods. We also consider the case where the
judgments are determined in a fuzzy manner. In Section 4 a numer-
ical method is proposed in order to estimate the Pgg from the actual
user judgments. Finally, some concluding remarks are presented in
Section 5.

2. Uncertainty modeling in PWC

In this section, we introduce the model used for incorporat-
ing uncertainty in the pairwise comparison matrices. Section 2.1
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provides a brief overview of the pairwise comparison framework,
while Section 2.2 considers the effects of uncertainty-induced per-
turbations under general assumptions. Section 2.3 details the uncer-
tainty model adopted in this paper. In Section 2.4 we describe how
we can estimate the probability of rank reversal through Monte Carlo
simulation.

2.1. The PWC framework

Within the PWC framework, instead of directly assigning priorities
to the various alternatives A; with 1 <i < N, each expert compares all
possible combinations of A; and A;. The outcome of these judgments
for the m™ expert are stored in a square N x N reciprocal matrix
P — [P,.E.’“)], which will henceforth be referred to as a pairwise com-

parison matrix. The value of the element Pi(j’") reflects the importance
of alternative A; over A;. The expert needs to complete only the up-
per triangular elements (i < j) of P(™) since by definition we have
P(m) 1/P(m) and P(m) =1 for a reciprocal matrix. The weights w(m)
of alternatlve A; accordmg to expert m can be calculated with various
ways. The most w1del ado?ted approach is to solve the eigenvalue
problem P(m)x(m where g (™ are the eigenvalues of P(™)

and xg") = [ ,(,’Z;)] are the correspondmg eigenvectors. Assuming that

the eigenvalues are ordered so that )Lgm) is the largest eigenvalue, then
the weight of alternative A; is estimated by normalizing the elements

of the principle eigenvector xgm) as follows (Saaty, 2003):

-1

W — xm [Z X(m)} 2)

In order to further simplify the comparisons, Saaty(2008) intro-
duced the nine-level scale shown in Table 1.

One way of measuring the inconsistency of a pairwise comparison
matrix is to calculate the Consistency Ratio (C.R.) defined as:

CL
In Eq. (3), C.I. is the Consistency Index which is estimated through:
A™_ N
C.l. —_— ﬁ (4)

The denominator in Eq. (3) stands for the Random Index (R.I.) which is
an average random consistency index derived from a sample of ran-
domly generated reciprocal matrices with elements scaled according
to Saaty (2003). Values of C.R. smaller or equal than 0.1 are generally
considered as acceptable and in this case, the matrix is said to be
nearly consistent (Saaty, 2003).

After all the comparisons have been completed, the average
weight wy, for each alternative Ay is calculated by averaging out the
weights w(m) obtained by the M experts,

Z w™ (5)

Table 1
The nine-level fundamental comparison scale.
Pig.”') Explanations
1 A; and A; are equally important
3 A; is slightly more important than A;
5 A; is strongly more important than A;
7 A; is very strongly more important than A;

9 A; is absolutely more important than A;

2,4,6,8 Intermediate values

Reciprocals of above  Used in analogous manner when A; is more important
than A;

The weights w;, determine the priorities of the alternatives and hence
the outcome of the PWC process. The method of estimating the
weights from the PWC matrices is by no means unique. In the next
sections we will also consider what happens when the weights are
estimated using the geometric mean method. We will also discuss
the situation where the pair wise judgments are carried out in a fuzzy
manner and the weights are calculated accordingly.

2.2. First order perturbation analysis

Before proceeding to the description of the uncertainty model used
in this paper, it is useful to consider the impact of uncertainty in PWC
under very general assumptions. From a theoretical standpoint, we
may consider that uncertainty acts as a kind of “noise” that impairs the
pairwise comparisons. We may think of P(™) as a perturbed version
of an initial N x N matrix A, i.e. PU™) = A + AP(™) where AP(™M) =
[APl.(jm)] is a random perturbation matrix, the magnitude of which is
related to the level of uncertainty. Since the weights w,({m) are obtained
from the perturbed principal eigenvector xgm) of P(™) it is interesting
to consider how x(m) is related to the principal eigenvector x; of A.

According to Saaty and Vargas (1987), the first order variation Ax(m)
of the principal elgenvector is determined by:

T (m)
Ax™ — x™ _x Z v AP
! e\l -k )

where v; and x; are the left and right eigenvectors of the initial pair-
wise comparison matrix A respectively while [; are the corresponding
eigenvalues. Expanding the matrix products of Eq. (6) in terms of the
individual matrix and vector elements 1t 1s revealed that the elements
of the perturbation vector Ax§ [Ax ] are a linear combination
of the elements of the perturbation elements AP}JT"). This fact has an
important bearing on the statistics of the perturbed weights: if one
assumes that a sufficient number of the perturbations APE}") are sta-
tistically uncorrelated, then according to the Central Limit Theorem
(CLT) (Rice, 1995), Axg';;) being a linear combination of statistically
uncorrelated variables, will approximately follow a Gaussian distri-
bution (provided that N is sufficiently large). The weights wl(cm) are
normalized versions of xg';:) and we therefore expect that they will
also approximately follow a Gaussian distribution. This can be de-
duced by considering the change 5w,(<m) in the weights w,((’“) inferred
by the perturbations Ax(m) in the principle eigenvector. Using the fact
that (o + Aa)/(B + Aﬂ) =alB + Aa/B — (a/B%*)AB for small Ax
and A B, one obtains from Eq. (2) an estimate for 8wkm) = wf{m - W
as follows:

(6)

Ax™ N

w, 1 20k Ax(m) (7)
¢ X1k C Z

3W,(<m) x~
where C = Xxq;. The above equation suggests that since, as men-
tioned above, Axlp is a linear combination of AP(’") the perturba-
tions SW,Em) will also be Gaussian. More 1mportantly, the statistics
of the uncertainty perturbations APi(]?“) are expected to mainly in-
fluence the variance of the Gaussian-like distributed weights W,ﬁm)
and have smaller impact on their actual statistical behavior (e.g. their
PDF). Furthermore the weights wy in Eq. (5) are the sum of w,(:") with
respect to m and the CLT again points out that w;, will also be approxi-

mately Gaussian-distributed. We will numerically verify this claim in
Section 3.1.

2.3. Description of the uncertainty model

The discussion of Section 2.2 already points out an intuitive way of
incorporating uncertainty in the PWC matrices. Instead of assigning
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a fixed value for the elements Pi(jm) we may assume that Pi(jm) varies
randomly inside an interval [Dy;, U;] (Saaty & Vargas, 1987). In addi-
tion, if the experts carry out their comparisons according to Table 1,
then the allowed values for Pi(?“) should be discrete. A word of cau-
tion is in order here however: the length Uy — Dj; of the interval
[Dyj, U] is not a suitable measure for the level of uncertainty. To il-
lustrate this, consider the intervals Iy =[1/9,1] and I, = [1, 2] with
lengths 1 —1/9 =8/9 and 2 — 1 = 1 respectively. Although I; has a
smaller length than I, it is easy to see that it actually corresponds to
higher uncertainty level than I, since there are nine distinct values of
Table 1 (i.e. 1/9, 1/8,..., 1) that are located inside I; while there are
only two such values for I;. This points out that in order to quantify
the uncertainty level it is preferable to consider the number n; of
discrete values contained in the interval rather than its length. In fact,
since an interval with D; = Uj; corresponds to no uncertainty a more
suitable measure of the uncertainty level is n; — 1.

Based on the above observation we consider the following map-
ping of the values V of Table 1, into a set of integers u = q(V) with
—8 < u < 8 such that:

Vo1, V=1
‘I(V):{l—l/v, vl ®

Itis easy to show that the quantity q(Uy;) — q(Dy;) is equal to n; — 1.
Also, for the intervals I; and I, considered in the paragraph above,
this quantity is 9 and 1 respectively which indicates that indeed I
corresponds to a much larger uncertainty level than I. We also define
the inverse mapping q~! of q such that g~ 1(q(V)) = V.

Another interesting question is how the boundaries D;; and U;; are
determined in the first place. It is evident that since Dj; and Uj; can
take a variety of values one can think of them as random variables
themselves. One way of randomly selecting D;; and Uj; is to start with
an initial nearly consistent matrix A = [A;] and set

q@Ay) + | Aug| . if q(Ay) + |Auy| <8
= - (9)
8, otherwise
Ai)— |Adg| . if qAy) — |Ady] > —8
dj = q(Ay) — | Adj) q( z]). |Adjj| = (10)
-8, otherwise

where Au;; and Adj; are independent, uniformly distributed variables
inside [—s/2, s/2] with variance o2 determined by
2
2 S7 2\ _ 2

0% =13 _<Auij)_(Adij) (11)

Egs. (9) and (10) ensure that the integers u;; and d;; remain within
the interval [-8, 8] and hence q*l(uij) and q*l(dij) correspond to
values contained in Table 1. We can therefore choose the uncertainty
interval boundaries according to:

Dji = q~'(dy) (12)

Uj=q " (uy) (13)
Given samples of the randomly generated pairwise comparison
matrices P(™), it is interesting to relate the strength of the perturba-
tions s to the expected uncertainty level L = (q(U;) — q(D;)) = {ny) — 1
shown in Fig. 1. Note that the mapping in Eq. (9) and (10) forces u;
and d;; to remain bounded inside [-8, 8] even if |Auy]| is large. This
implies that L is determined by both s and the value of q(A;). Given the
value of s, the corresponding value of L is estimated by Monte Carlo
simulations. The results are plotted in Fig. 1 which provides a means
of translating the value of L to the perturbation strength s and will be
used in the realization of the uncertainty model described below.

2.4. Estimation of Pgg through Monte Carlo simulation

Taking into account the above discussion, we now proceed to de-
termine how the probability Pgg of rank reversal is related to the

’ e ay)=0
a4y =+l
o[ o q(Al_j) =42
ke g(4)) = 43
<4 Al e ata) = 4
—e—q(d,) = 5
N i a(4,) = %6
= qdy) =7
, —— g4, = +8

% 1 2 3 4

Fig. 1. L as a function of the perturbation strength s.

uncertainty level L and expert group size M. Our approach is based
on Monte Carlo (MC) simulations. In each iteration k, we generate
a matrix A(¥), the elements of which are randomly chosen from the
values of Table 1. If A¥) is not nearly consistent (i.e. C.R. > 0.1 accord-
ing to Section 2.1) then it is discarded and we recalculate A(Y) until
this criterion is met. Given the value of L and the value of each ele-
ment Ag‘) of AlK), we use Egs. (9) and (10) to estimate ui(;{) and dg‘) by
generating the random perturbations Adg‘) and Aug‘). The strength
of the perturbations s is chosen based on the values of Fig. 1. Once
Dg‘) = q(dg‘)) and Ul.g.k) = q(ug‘)) are determined, we generate a large
number of PWC matrices (typically Ny,uix = 10%) and distribute them
in NG = | Nmatrix/M| groups of M nearly consistent matrices P(*) with
1 < vV < Npawix and where | x| stands for the largest integer which
is smaller than x. In the context of Section 2.2, the matrices P(*) can
be assumed as a perturbed version of A(K) and the perturbation is
simply AP(") = P(") — A(K), For each of these N¢ expert groups we
calculate the priorities of the alternatives as discussed in Section 2.1.
We then estimate the number Fg of groups for which the order of
priorities calculated is different than the order of priorities W, cal-
culated by averaging out the weights obtained by all the matrices
P("), The latter priorities corresponds to the order obtained by a very
large (M = Nparix) group of experts and since Ny,qix 1S very large,
one expects that W, are approximately equal to the ideal weights W,
corresponding to the limit of infinite group of experts (M— ). The
probability of rank reversal for iteration k is then approximated as
Prr(A)) = F;[Ng. In the next iteration k + 1 we estimate a differ-
ent initial matrix A(¢+1) and estimate the probability of rank reversal
Prr(Atk+1)), The average probability of rank reversal (independent of
the choice of the initial matrix) is then calculated as

LR P
Pre= — Y Peg(A 14
RR Nuc — RR( ) ( )

where Ny is the total number of MC iterations. It is interesting to
note that one can estimate Pgg for many different values of M using
the same random samples of the pairwise comparison matrices.

3. Numerical analysis and results

In this section, we present the results obtained when we apply
the framework described above in Section 2. Section 3.1 presents
some numerical results that further validate the first order analysis of
Section 2.2, while Section 3.2 examines the convergence properties
OfPRR.

3.1. Validation of first order analysis

To validate our first order analysis, as presented in Section 2.2, we
numerically calculate the PDF of a representative average weight wy,
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(b)

80

N=6, M=10

O MCf(actual)
® MC(first order)
60| — Gaussian Fit 9

40

PDF

20,

0.46 0.47

Fig. 2. PDF of the weight w; obtained by averaging the w,((’“), which are estimated through simulation. Also plotted is the Gaussian least squares fit. The uncertainty level is L = 3,

the number of experts is M = 10 and the number of criteria is (a) N = 4, (b) N = 6.

(a)

120,

N=4, M=40

O MC(actual) ~
® MC(first order)| ¢
— Gaussian Fit

100]

PDF

0.47

(b)

N=6, M=40
250,
O MC(actual)
® MC(first order)
2
00 — Gaussian Fit
150
(=
2
100
50
0 ‘ .
0.155 0.16 0.165 0.17
Wi

Fig. 3. PDF of the weight wj, obtained in the case where M = 40. The rest of the parameters are the same as in Fig. 2.

obtained by a group of experts of size M. The PWC matrices of all ex-
perts are calculated as discussed in Sections 2.3 and 2.4 starting from
the same nearly consistent N x N initial matrix A with C.R. < 0.1.
The results are shown in Figs. 2 and 3, for the cases of M = 10 and
M = 40 experts, respectively, both for N = 4 and N = 6 criteria. 108
Monte Carlo (MC) iterations are used and we assume the case where
the uncertainty level L is equal to 3. The figure shows the PDFs ob-
tained using either the full weight calculation method outlined in
Section 2.1 and the first order approximation given by Eq. (6). Also
shown is the Gaussian fit to the former PDF (the Gaussian fit to the
latter case is practically the same). The figures illustrate that Eq. (6)
is indeed a valid approximation for the individual and hence the av-
erage weight perturbations. In addition, the average weights follow a
normal distribution in accordance to what has been discussed in the
previous paragraph. Similar results are obtained for the rest of the
weights as well as for other values of N, L and M. Fig. 3 shows the PDF
obtained for M = 40 starting from another initial matrix A.

The above discussion in Section 2.2 and the results of this section
highlight the fact that to a first order, other than determining the
mean value and standard deviation of the priorities wy, the statistics
of APl.(jm) should play a secondary role in the rest of the statistical
properties of wy, (e.g. the shape of their PDF).

3.2. Convergence properties of the probability of rank reversal

3.2.1. Implementation of the Pgg uncertainty model

Applying the uncertainty model discussed in Sections 2.3 and the
Monte Carlo simulation procedure in Section 3.1, we can calculate the
probability of rank reversal Pgg, in order to estimate its dependence
on the expert group size M which is a key issue from a practical

(a)

5004
&0

Fig4. (a) Pgg and (b) APgg as a function of the expert group size for N = 3.

point-of-view, as discussed in the introduction. We first examine the
convergence properties of Pgg with respect to M, in the case of a
relative small number of alternatives (N = 3), taking into account a
variety of uncertainty level values L. For each value of M, we performed
Nyc = 103 iterations and on each iteration we generated Ny rix = 10%
random matrices. As indicated in Fig. 4(a), Pgg is already low (below
7 percent) even for a group size as small as M = 10 for reasonable
values of L. Another important conclusion drawn by the figure is that
the convergence speed of Pgg is rather slow. For example, for L = 7,
Ppr changes from 6.8 percent to 3.5 percent when the number of
experts is increased from 10 to 20, implying a small practical gain
from increasing the expert group size, since Prg is already low for
M = 10. The gain is even lower for smaller uncertainty levels. The
figure also illustrates that there is not much sense in increasing the
number of experts beyond M = 15 since the reduction in Pgg is even
smaller.
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N=3, M=10, L=7
80 ; ‘ ‘
o MC
Gaussian Fit
60}
=
Q401
[T}
20f
0 g N N e N
0.065 0.066 0.067 0.068 0.069 0.070 0.071
P
RR

Fig. 5. PDF of the values of Pgg obtained from multiple simulations assuming N = 3,
M =10 and L = 7. We also plotted the Gaussian least squares fit.

In order to examine the reliability of the estimated Pgg values we
can calculate the confidence intervals. We first start with the statistics
of the values P; for the probability of rank reversal Prg obtained by
running multiple Monte Carlo iterations for a single value of M. If all
these values are similar, we can deduce that our results are credible.
Fig. 5 plots the PDF of the calculated Pgg values obtained by their
histogram over Nyc = 103 simulations forN=3, M=10and L = 7.
Since the value of Pgg in each simulation is calculated as the average
over many independent realizations, the Gaussian PDF fits very well
with the estimated PDF. We also notice that there are small variations
in the calculated Pgg values (the PDF is practically non-zero from
0.067 to 0.070). Since the statistics are Gaussian, we may also readily
calculate the confidence interval I¢ for a 95 percent confidence level.
Using standard confidence interval formulas (Hanke & Wichern, 2008)
we readily find that Ic = [0.067, 0.068] and Ic = [0.0179, 0.0180] in
the case where L=7, N=3, M=10and L =1, N=3, M =10
respectively. These tight confidence intervals imply that the number
of iterations considered in the calculations of Figure 4 is adequate in
order to accurately estimate the probability of rank reversal. Similar
results are obtained when estimating the confidence intervals of other
points in the graphs. For example for M = 40, L = 7, N = 3 we obtain
Ic = [0.0099, 0.01].

To further understand the convergence of Pgg with respect to M,
we calculate the differential decrease APgr(M) in the probability of
rank reversal when the group size is increased by AM = 1 expert:

APgr(M)

AM

In Fig. 4(b) we have plotted APgg as a function of M. The figure
indicates that even for L = 7, the changes in the probability of rank
reversal when an additional expert is added in the group are very
small (below 1 percent per expert) at M = 15. It therefore makes little
sense of increasing the expert group size beyond that. This is also
shown in Fig. 4(a) where increasing M from 15 to 40 has very little
impact from a practical point of view, since the additional number of
experts only marginally reduces the uncertainty of the outcome.

Fig. 6(a) shows the values of Pgg for the case where N = 6 alterna-
tives are pairwise compared, assuming the same uncertainty levels as
in Fig. 4. As expected, since the number of alternatives is now larger,
one obtains higher values for Pgg than in (may even exceed 20 per-
cent in some cases). Indicatively, for L = 7 the confidence intervals are
Ic = [0.22,0.23] and Ic = [0.0245, 0.0255] for M = 10 and M = 40 ex-
perts, respectively. Fig. 6(b) shows the corresponding values of APgg
and it is deduced that varying the size of the expert group is now
more beneficial. For M = 10, Pgg is reduced to about 18 percent when
the group size is increased by 1 in the case of L = 7. However, for
M > 15, the gain becomes progressively smaller as a result of the slow
convergence of Prgr. Given the practical restrictions of increasing the

= |Prr(M + 1) — Prr(M)] (15)
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Fig. 6. (a) Prg and (b) APgg as a function of the expert group size for N = 6.
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Fig. 7. Pge as a function of the expert group size for L = 3.

group size, the figure suggests that using more than 15 experts may
not have a strong bearing in the uncertainty of the results.

Fig. 7 illustrates the convergence of PWC for different values of
criteria N and a constant L = 3. We consider the cases where N = 2,
N=4and N =6.The model easily allows to consider cases where N > 6,
but in actual situations, performing PWC with that many alternatives
becomes impractical since the number of pairwise comparisons N
for each expert is given by Nc = N(N — 1)/2 and therefore scales as
O(N?). As shown in the figure, Pgg does depend on N: For a group size
of ten experts (M = 10), Pgg = 6 percent when the experts are asked to
make pairwise comparisons on six alternatives and this drops slightly
to 3.5 percent when the number of criteria is 6. Other than that, the
convergence behavior of Pgg does not seem dependent on the number
of criteria. In all cases, there is no significant gain in increasing the
group size beyond 15. This is due to the slow convergence properties
of PWC, which seems to hold regardless the number of alternatives
used and the uncertainty level.

Up to this point, we estimated Prg taking the same uncertainty
level associated with each expert in the group. It is also interest-
ing to carry out this estimation when a different uncertainty level
L(m) is assumed for each expert m. From a practical point-of-view,
this reflects what could happen when the level of expertise varies
from participant to participant. Fig. 8(a) shows the values of Pgg, as a
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Fig. 8. (a) Prg and (b) APgg as a function of the expert group size for different uncer-
tainty levels for each expert.
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function of the expert group in the case where the uncertainty level
L(m) is randomly selected with equal probability inside the integer
interval [1, 7]. The results are shown for N = 3 and N = 6. One obtains
similar convergence behavior to the previous case. Similar results
were also obtained if we calculate the differential decrease APrr(M)
as shown in Fig. 8(b). The similar convergence behavior observed in
the case of varying uncertainty level can be explained taking into ac-
count the theoretical framework of Section 2.2, where we have shown
the statistical properties of the uncertainty perturbations other than
their mean value and standard deviation, are not expected to play
that big of a role in the statistics of the weight and hence of the Pgg.
We therefore expect a change in the values of Pgg but its convergence
behavior with respect to M should be more or less the same.

3.2.2. Alternative preference scales

The linear preference scale consisting of integers from one to nine
and their reciprocals shown in Table 1 is used quite often in appli-
cations of the PWC method. Saaty (1991) advocates this scale as the
best one to represent weight ratios. Nevertheless, it is interesting to
investigate the convergence properties of Pgg considering alternative
preference scales such as the inverse linear or the logarithmic scale
(Ishizaka & Labib, 2011). Instead of the elements in Table 1, in the
former scale we use the elements 9/(10 — x) where x € {1, 2,..., 9}
as well as their inverses (10 — x)/9. The alternative scale {1/9, 2/9,...,
1,..., 9/2, 9} can therefore be indexed in the same way as the scale
of Table 1 but with a different mapping q(V). The matrices can again
be chosen by randomly selecting the indices as before and applying
the alternative mapping. The elements of the logarithmic scale are
determined by logy(x + (o — 1)) wherex € {1, 2,...,9}and @ > 1
and their inverses and can be again indexed in a similar way. In any
case, we may still use L as a measure of uncertainty.

Fig. 9(a) and (b) illustrates APgg for the inverse linear and log-
arithmic scales, respectively in the case N = 6. For the logarithmic
scale we assumed a = 2 (Ishizaka, Balkenborg, & Kaplan, 2011). As
shown in Fig. 9, the convergence of APgg is again slow, implying that
the convergence of Pgg is similar even when an alternative prefer-
ence scale is used by the experts. From Fig. 9(a) and (b) one may
deduce that APgg varies in a similar manner as before, again sug-
gesting that there is no significant gain in increasing the group size
beyond 15.

3.2.3. Weight estimation through the geometric mean method

Another important issue to consider is whether the results pre-
sented above depend on the weight estimation method. Instead of
estimating the weights wlgm) through the eigenvalue method (EM)
discussed in Section 2.1, one could also apply the Geometric Mean
Method (GMM) or equivalently the Logarithmic Least Square Method
(LLSM) (Saaty, 1990). This method attempts to fit the elements of the
pairwise comparison matrix P(™) with a perfectly consistent matrix,
i.e. a matrix whose elements are of the form wi(’11 /WJ('"). The weights

N=6

~ W —

Fig. 9. APgg as a function of the expert group size for different L for (a) inverse linear
and (b) logarithmic scales.
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Fig. 10. (a) Prg and (b) APgg as a function of the expert group size for different L for
N = 6, for the case of GMM.

are therefore determined by minimizing the following metric through
unconstrained nonlinear optimization:

N q(m) 2
Qoum = 2; (long") —log q'fm) ) (16)
ij= J

After the minimization is performed, we choose Wi(m) = |ql.(m)| /
P |qj(m)| to ensure that they are positive and sum up to one. In our
implementation we use MATLAB’s fminsearch function which is based
on the simplex search method (Lagarias, Reeds, Wright, & Wright,
1998).

Fig. 10(a) and (b) shows the values of Pgg and APgg for the case
of GMM, where N = 6 criteria are pairwise compared assuming sev-
eral uncertainty levels L. It is shown that for both low and high L,
one obtains a similar convergence behavior for Pgg and APgg as in
the EM case. Comparing Fig. 10(a) and (b) with Fig. 6(a) and (b) re-
spectively one also deduces that the actual values of APrg and Pgg
are approximately the same implying that both weight estimation
achieve approximately the same credibility.

3.2.4. Impact of fuzzy judgments

In this section we investigate the case where the experts carry out
their comparisons in a fuzzy manner (Deng, 1999), i.e. by assigning
fuzzy numbers in the elements of the pairwise comparison matrix
(Chao Chung, 2011). A fuzzy number b does not refer to one single
value but rather to a connected set of possible values x centered
on b, each with its own weight uj(x) between 0 and 1. This weight
distribution is called a membership function. In the special case where
the membership function is triangular, then

x-D/b-1, Il<x<b
up(x)=@Ww-x)/(u-b), b<x=<u (17)
0, otherwise

where [, u] is the range of values of x, in which the weight u;(x) is non-
zero. The triangular membership function in Eq. (17) is determined
by the triplet (I, b, u) which consequently completely determines the
fuzzy number b.

To carry out fuzzy PWC, we need to define a fuzzy preference
scale where fuzzy numbers are used instead of precise numbers as in
a conventional preference scale. The pairwise comparison elements
will therefore consist of fuzzy rather than precise numbers. The scale
adopted can be a fuzzy extension of a conventional scale such as
the one in Table 1. The fuzzy scale adopted in this work consists of
the fuzzy numbers b where b is an integer 1 < b < 9 and where
b=®b-1,bb+1)if2<b=<8 1=(1,1,1) and 9= (9,9,9). The
scale also contains the reciprocal elements of b as defined in Chao
Chung (2011).

The procedure for the estimation of the fuzzy weights is based on
extension principle theory (Gerla & Scarpati, 1998). Once the pair-
wise comparison elements (l,.(}“), bi(}“), u,.(}“)) are determined, we apply
a constrained minimization procedure to estimate the fuzzy weights
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(rl.(m),wi(m), elgm)) for each expert. The function to be minimized is

written as:
rm 72 wm 72 e™ 71?
1 1 1
In NOAD] + |In 7me)b,-(jm) +|In MORD) ,-(jm)rj(m)

y

N
1=
=i

hi

(18)

The minimization constraints are outlined in (Wang, Elhag, &
Hua, 2006). In our implementation we use MATLAB’s fmincon func-
tion which is based on the interior point algorithm (Waltz, Morales,
Nocedal, & Orban, 2006). To calculate the average fuzzy weights
W; = (r;, w;, e;), we simply average the points of the individual mem-
bership functions, i.e. r; = M~1Y,, rl.('" S Wwi=M1Y, ng) and e; =
MY e ™,

In order to incorporate uncertainty in this fuzzy extension of PWC,
we consider the following approach where the pairwise comparison
matrices of the experts are obtained again by randomly perturbing
an initial consistent pairwise comparison matrix A*) in order to ob-
tain the matrices P(*) as discussed in Section 3.1. Given P(*) we then
consider its fuzzy extension P with elements Pi(j“) = (ll.(j“), bl.(jv), u,.(jf’))
where bl.(j”) =Pi(j”) and Ii(j") and ufj") are determined according to the
fuzzy scale as discussed above. From this point forward the simu-
lation procedure is the same as before except that the weights are
calculated by the minimization of Eq. (18) instead of the eigenvalue
method. In the context of fuzzy judgments, we assume that rank re-
versal occurs whenever there exist at least two indices i, j for which
the ordering of the center or the upper edge of the corresponding
membership function changes compared to the one obtained by a
large group of experts.

In Fig. 11(a) and (b) we show APgg in the case of fuzzy judgments
as a function of the expert group size, for N = 3, N = 6 criteria respec-
tively. The figures illustrate that even in the case of fuzzy judgments,
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Fig. 11. APgg for fuzzy judgments as a function of the expert group size for different L
for () N=3and (b) N=6.
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the convergence of Pgg is again slow. For N = 6, APgg is smaller than
0.01 for M > 15 even for large uncertainty levels indicating not much
practical gain in further increasing the group size.

4. Estimation of probability of rank reversal from actual
user data

The previous analysis dealt with the impact of uncertainty in the
evaluation of the priorities of the alternatives, quantified in terms of
Prr. We now consider the issue of estimating Prg from actual user
data, i.e. a relatively small number of pairwise comparison matrices
P(™) obtained by a single expert group. In this section, we propose
a numerical method to achieve this and validate our approach with
numerical simulations.

4.1. Numerically evaluating Prg

Our scheme for evaluating the probability of rank reversal is de-
scribed in the dash line frame of Fig. 12. We first extract some in-
formation on the statistical properties of the perturbations (step 2 in
Fig. 12). One approach is to calculate the maximum and minimum
values of Pi(jm) with respect to m:

Uj = max {Pfj"”} . Dj=min {Pfjm} (19)

Another approach would be to map the elements Pi(jm) to their
corresponding integers according to Eq. (8) and then estimate the
mean value j;; and the standard deviation o of q(Pl.(jm)) with respect
tom, i.e.

1 M
= 3 =
m=1
o2=1 XM: [a(P™) - 4-]2 (21)
i =M . atry; Mij
m=

Assuming uniform statistics, Eqs.(19) and (20)-(21) are two al-
ternative methods for determining the statistics of the perturba-
tions. Once these statistics are identified, one can perform Monte
Carlo simulations (step 3 in Fig. 12) to determine the probability
Pgg. In the first case, one generates a large number Npyc of random
pairwise comparison matrices R()) 1 < | < Npwc, the elements RS) of
which are uniformly chosen from [ng, Ulf].]. Note that these matrices
do not correspond to pairwise comparison matrices filled out by any
actual experts. Rather, they are random matrices numerically gener-
ated based on the information extracted by the limited set of user
matrices P(™), In the second case, one again generates the random
matrices R(!) assuming that Ri(;) follow a uniform distribution which is

determined by the mean value w;; and standard deviation o ;. In any
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Fig. 12. Illustration of the simulations carried out in Section 4. The dotted frame contains th

e proposed method for estimating the probability of rank reversal from a limited set of

pairwise comparison matrices. The rest of the figure explains how the credibility of the proposed estimation scheme can be verified by numerical simulations.
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case the random matrices R(!) are distributed into | Npwc/M] groups
containing M matrices each. The probability of rank reversal can be
approximated by calculating the number of times for which the prior-
ities obtained by each of these groups is not the same as that obtained
by the initial weights w;, (step 4 in Fig. 12). In order to distinguish be-
tween the two estimates we designate as Pé"]g‘“max) (A¥) and P]gsl{d) (Ak)
the probabilities of rank reversal obtained by Eqs. (19) and (20)—(21)
respectively given the initial matrix A¥. One should note that if the
initial group size from which the data are gathered is infinite (M —
o), the two alternative methods for calculating R() are equivalent,
hence P{RI"™a) (ak) — P& (Ak). However, in the case of finite M they
may provide a different estimate for Pgg.

4.2. Results and validation

In order to validate the Prg estimation procedure we again resort
to Monte Carlo simulations as suggested by the rest of Fig. 12. In
each Monte Carlo iteration k, we calculate an initial matrix A¥ and
estimate the intervals [Dj;, U] as before (Section 3.1). We then gen-
erate the matrices P(™) where 1 < m < Nyarrix. We choose the first M
matrices P(™) where 1 < m < M to correspond to the user matrices,
while the rest of the matrices are to estimate the actual probability
of rank reversal Pgg(AK) which is obtained in the fashion explained in
Section 3.1. In accordance to what was discussed in Section 4.1, the
matrices P(™) where 1 < m < M are used to estimate either Di; and
Ufj according to Eq. (19) or u;; and o' according to Eqs. (20) and (21)
respectively. Afterward we generate the matrices R() and use them to
estimate P]({E‘“max) (A¥)and Pl(g{d) (AK) (steps 1 to 4 in the dotted portion
of Fig. 12 explained in Section 4.1). To measure the error introduced
by the aforementioned estimation methods, we calculate the error
function defined by

e (Ak) = |PW (A¥) — Pyg(A) (22)

where u stands for either “minmax” or “std”. Averaging over many
possible of the initial matrices obtained in the different Monte Carlo
iterations, we can therefore obtain an estimate for the average error:

w_ 1S wa
e = e™ (A" 23
e L @3)

Fig. 13(a) and (b) shows the values of e(t9) and e(minmax) ghtained
by the MC simulations as well as the probability of rank reversal Pgg
obtained by the procedure outlined in Section 3, forL=5and (a) N=3
and (b) N = 6. We see that the average error depends on the method
used for the estimation of the perturbation statistics. The values of
e(minmax) gre higher than e(*d) demonstrating that determining the
perturbation statistics through the mean value and standard devia-
tion is much better. This is in accordance with what was discussed
in Section 2.2 where the CLT was used to discuss the perturbation
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Fig. 13. Pgg and e() as function of the expert group size for L = 5 and (a) N = 3, (b)
N=6.
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Fig. 14. Py and e as function of the expert group size for L = 7 and (a) N = 3, (b)
N=6.

statistics. The statistical properties of the perturbed weights resem-
ble those of a Gaussian distribution. In addition, according to the
CLT, it is the mean value and the standard deviation that primarily
determine this distribution rather than other measures like D;j and
UEJ used in the “minmax” method. We see that for N = 3, the “std”

method results in an average error of e5t9) = 2 percent for M = 10
which corresponds to less than half the value of Pgg implying that
the method correctly estimates the order of magnitude of Pgg which
is important in practical applications of the method. Similar observa-
tions are drawn in the case where N = 6, shown in Fig. 13(b) indicating
that the method provides reasonable accuracy for increasing number
of alternatives. On the other hand, the “minmax” method produces
larger errors in the estimation of Prg and especially in the case where
N = 6 produces errors which are larger than the value of Pgg itself. It
is also interesting to investigate the accuracy of both methods under
an even greater uncertainty level. In Fig. 14(a) and (b) we show the
values of e(std) and e(Minmax) jp the case where L = 7 again for N =3 and
N = 6 respectively. It is again deduced that the “std” method provides
sufficient accuracy when estimating the probability of rank reversal
while the “minmax” approach leads to significant larger errors. Both
methods however seem to provide a correct estimate regarding the
order of magnitude of Pgg.

Fig. 15 discusses the accuracy of the “std” approach for a group size
equal to M = 15 which according to Section 3, is a sufficient group
size to estimate the priorities of the alternatives, given the limitations
of practical PWC applications. It is verified that e(st) is significantly
smaller than Pgg implying a tolerable error in the estimation of the
probability of rank reversal.

In the aforementioned results, the eigenvalue method was used
for the estimation of PWC weights. Nevertheless, it would be very in-
teresting to investigate the estimation of Pgg from actual user data
applying the Geometric Mean Method, as analyzed previously in
Section 3.2.3. Fig. 16 shows the values of Pgg and e for the case
where N = 3 criteria are pairwise compared assuming an uncertainty
level L = 5. The results reveal that the values of Pgg, estimated by
actual user data, increasing the expert group size is more or less the
same as mentioned before in the context of EM in Fig. 13(a). It is again
deduced that the “std” method provides sufficient accuracy while the
“minmax” approach leads to larger errors.
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Fig. 15. (a) e and (b) Pgg as a function of the uncertainty level for M = 15.
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Fig.17. Pgg and e™ as function of the expert group size in the case of fuzzy judgments.

4.3. Impact of fuzzy judgments

It is also interesting to investigate the estimation of Prg from ac-
tual user data considering the representation of judgments by fuzzy
numbers, as discussed in Section 3.2.4. Toward this end, we apply the
scheme shown in Fig. 12 except that the matrices are now replaced
by their fuzzy extensions and the weights are calculated in a fuzzy
manner as discussed previously. Again the probability of rank rever-
sal from actual user data can be estimated using both the “minmax”
and “std” methods. The uncertainty model is modified in order to
incorporate the fuzzy judgments in the opinion of experts when gen-
erating the matrices R(!), where the elements Rg) either are uniformly
chosen from [ng Ul(].] for the case of “minmax”, or follow a uniform
distribution determined by the mean value w; and standard devia-
tion o; for “std” method. In Fig. 17 we show the values of e(*¥) and
e(minmax) jn the case where L = 5 and N = 6. Inspection of the results
depicted in the figure reveals that similar conclusions are drawn for
the estimation of Pgg from actual user data in the case of fuzzy judg-
ments. It is obvious that applying either the traditional PWC or the
fuzzy triangular representation of PWC judgments, the “std” method
prevails against the “minmax” for the estimation of Pgg from actual
user data.

5. Conclusions

In this paper, we applied an uncertainty model to address two
important issues concerning the probability of rank reversal in pair-
wise comparisons. The first issue concerned how this probability is
reduced by augmenting the number of experts participating in the
surveys. The results dictate that there is not much to be gained by
increasing the number of experts beyond 15, even if uncertainty
level is large. Using perturbation theory we have argued that the
convergence of the probability of rank reversal with the number of
experts is not crucially dependent on the uncertainty statistics. We
have also shown numerically that the choice of comparison scale
and weight selection method does not significantly affect the conver-
gence. The second issue concerned the problem of how the probability
of rank reversal can be estimated in practice, from the elements of the

pairwise comparison matrices of a single expert group. Two alter-
native methods have been discussed for extracting information on
the statistical behavior of the uncertainty-induced perturbations. It
was shown that one of them provides reasonable good accuracy and
can therefore be used in practical applications of the method for es-
timating the credibility of the outcome. Interestingly enough, this
conclusion holds under other situations such as fuzzy pairwise judg-
ments, alternative preference scales, weight estimation methods and
accounting for a different uncertainty level for each expert in the

group.
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