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In this paper, we address the impact of uncertainty introduced when the experts complete pairwise com-

parison matrices, in the context of multi-criteria decision making. We first discuss how uncertainty can

be quantified and modeled and then show how the probability of rank reversal scales with the number of

experts. We consider the impact of various aspects which may affect the estimation of probability of rank

reversal in the context of pairwise comparisons, such as the uncertainty level, alternative preference scales

and different weight estimation methods. We also consider the case where the comparisons are carried out

in a fuzzy manner. It is shown that in most circumstances, augmenting the size of the expert group beyond 15

produces a small change in the probability of rank reversal. We next address the issue of how this probability

can be estimated in practice, from information gathered simply from the comparison matrices of a single

expert group. We propose and validate a scheme which yields an estimate for the probability of rank reversal

and test the applicability of this scheme under various conditions. The framework discussed in the paper can

allow decision makers to correctly choose the number of experts participating in a pairwise comparison and

obtain an estimate of the credibility of the outcome.

© 2014 Elsevier B.V. All rights reserved.
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1. Introduction

Decision making (Bhushan & Rai, 2004; Yager, 2004) consists of

choosing a specific course of action between several alternatives and

is encountered in countless areas of human activity. In many circum-

stances, where complex decisions need to be made involving high

stakes, it is desirable to proceed in a structured and methodolog-

ical manner, rather than simply rely on the skills and intuition of

a single decision maker. Multi-criteria decision analysis (MCDA) or

multi-criteria decision making (MCDM) (Triantaphyllou, 2000) aim

at facilitating decision makers in complicated situations where nu-

merous and sometimes conflicting criteria or factors have to be taken

into account.

MCDM is further classified into multi-objective decision mak-

ing (MODM) and multi-attribute decision making (MADM) (Pohekar

& Ramachandran, 2004). In MODM, a set of objective functions is
∗ Corresponding author at: National and Kapodistrian University of Athens, De-

partment of Informatics and Telecommunications, Panepistimiopolis, Ilisia, GR15784
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ptimized subject to constraints and hence the efficient solutions in

set of alternatives are sought. MODM typically requires the solution

f a series of mathematical programming models in order to reveal

mplicitly defined efficient solutions. On the other hand, in MADM,

small number of pre-determined alternatives are to be evaluated

nder a common set of criteria and the best alternative is usually se-

ected by making comparisons between alternatives with respect to

ach criterion.

A fundamental problem in decision making is to grade the impor-

ance of a set of alternatives and assign a weight to each of them.

he importance of alternatives usually depends on several criteria

hich can be evaluated within the decision making framework in

hich pairwise comparisons (PWC) are an essential ingredient (Saaty

Vargas, 2001). In the context of MADM, PWC enables the ranking of

lternatives by allowing the experts to compare the various criteria

r alternatives in pairs instead of assigning their priorities in a sin-

le step (Saaty, 1977). This reduces the influence of subjective point

f views, associated with eliciting weights directly. PWC is usually

erformed in MADM methods such as the Analytic Hierarchy Process

AHP) (Saaty, 2003), the Weighted Product Method (WPM) (Chang &

eh, 2001), the preference ranking organization method for enrich-

ent evaluation (PROMETHEE) (Brans, Vincke, & Mareschal, 1986),

he Analytic Network Process (ANP) (Saaty, 2004) and so on. The aim
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f this paper is to consider the influence of uncertainty in PWC and

ow the credibility of the outcome can be assessed. Although the

ocus is on PWC alone, the results have some implications on the

pplications of MADM frameworks, particularly in the number of ex-

erts that are required and how the credibility of key parts of the

ramework can be ascertained.

In recent years, PWC has been used either as a stand-alone method

r as part of complex MADM frameworks on several areas includ-

ng government (Huanga, Chub, & Chiang, 2008), business (Lee &

ozar, 2006), industry (Chan, Lau & Ip, 2006), healthcare (Liberatore &

ydick, 2008), technology (Gerdsri & Kocaoglu, 2007), education

Zahedi, 1986), communications (Dede, Kamalakis, & Varoutas, 2011a,

011b; Dede, Varoutas, Kamalakis, Fuentetaja, & Javaudin, 2010), agri-

ulture (Abildtrup et al., 2006) and energy planning (Kok & Lootsma,

985). The method itself has also been the focus of extensive research

n the field of decision making. Recently in Fan and Liu (2010) , a form

f uncertain preference information, called ordinal interval numbers,

as used in pairwise comparisons in order to rank the alternatives.

n Doumpos and Zopounidis (2004) , the issue of how pairwise com-

arisons can be used for the classification of alternatives in differ-

nt classes of preference is discussed. The problem of deriving the

eights from the pairwise comparison matrices using several alter-

ative approaches is studied in Barzilai (1997) and Choo (2004) . In

wiesielewicz and Van Uden (2004) several issues concerning the

nconsistency of the pairwise comparison matrix and its impact on

he decision making process are highlighted. In addition, fuzzy pair-

ise comparison for solving the decision making problems has been

roposed in Boenderb, Graan, and Lootsma (1989), Deng (1999) and

ikhailov (2005) . In Marimin, Umano, Hatono, and Tamura (1998)

inguistic labels are used in order to express fuzzy preference relations

n pairwise decision problems. Moreover, Shiraishi, Tsuneshi, and

otomasa (1998) dealt with the properties of the principal eigen-

ector of PWC matrices.

The influence of uncertainty due to the imperfect and subjective

xpert judgments is of paramount importance when considering the

redibility of the outcome of a decision making process. Several stud-

es have attempted to shed some light on this issue in the context

f PWC. For example, in Carmone, Karab, and Zanakis (1997), Monte

arlo simulations were performed to study the Incomplete Pairwise

omparisons (IPC) algorithm and investigate the effect of missing

nformation in pairwise comparisons. Furthermore, in Aull-Hyde,

rdogan, and Duke (2006) it has been shown that given a sufficiently

arge group size, the consistency of the aggregate comparison matrix

s guaranteed regardless of the measures used to estimate the con-

istency of the individual matrices, if the geometric mean method is

sed to estimate the weights. Moreover, in Hahn (2003) a stochastic

haracterization of the pairwise comparison judgments is provided,

hile statistical models for deriving the weights of the alternatives

sing Markov chain Monte Carlo are also presented. Furthermore,

arkas (2007) theoretically studied the conditions for rank reversal

n perturbing the PWC matrices, while Chen and Kocaoglu (2008)

lso studied the rank reversal problem in this particular context, and

ame up with an algorithm to analyze the sensitivity of hierarchical

ecision models.

The main purpose of our work is to provide a suitable character-

zation of the impact of uncertainty in PWC. A first step in order to

haracterize the impact of uncertainty in PWCs, is to identify a suit-

ble measure for quantifying its effects. Assume for instance that N

ifferent alternatives are pairwise compared by M experts, each with

ossibly a different view on the ranking of the alternatives. As dis-

ussed further below in Section 2.1, PWC aims at providing an average

anking, encompassing all these diverse opinions of the experts. It is

f course natural to expect that the credibility of the overall process

ill be increased as the size of the expert group increases. Therefore,

ne possible way of measuring the trustworthiness of the results is

o define the probability of rank reversal (PRR) (Saaty & Vargas, 1984)
s follows: Let W1, . . . , WN be the weights calculated by the PWC

n the case of a very large group of experts (M → �). In a practical

ituation where M is finite, uncertainty may undermine the PWC and

he calculated weights wk may turn out different than Wk. Uncer-

ainty can be due to the difference of opinion among the experts or

nconsistent pairwise comparisons. The probability of rank reversal is

ormally defined as:

RR = P {the ranking obtained by wi,

1 ≤ i ≤ N, is different than that of Wi} (1)

high PRR implies that the outcome of the PWC in question is not

rustworthy and could therefore lead to incorrect decision making.

here are two important issues that need to be addressed concerning

RR:

a) How does PRR relate to the number of experts M? An obvious

way to reduce the effect of uncertainty is simply to increase M,

but from a practical point of view, this is not a trivial task. It

is usually difficult to locate many experts within a single orga-

nization or even in the wider public with sufficient expertise

that would be willing to participate in the PWC surveys. On

the other hand, there is no clear answer to the question of how

many more experts need to participate in order to considerably

reduce the uncertainty of the outcome. Say for example, that

there are already M = 10 experts participating in the endeavor.

How much is there to be gained in terms of PRR by doubling or

even quadrupling the size of the group of experts?

b) How can PRR be estimated from actual expert judgments in

practice? When applying PWC in a specific decision making

problem, one has access to the elements of a limited number

of pairwise comparison matrices P(m) (where 1 � m � M).

So the question becomes whether one can extract any kind

of information regarding PRR and hence the credibility of the

results based on just the elements of P(m).

The present paper attempts to deal with both points above. We

rst discuss a model for incorporating uncertainty in PWC and con-

ider a suitable measure for quantifying the uncertainty level. We

hen discuss how PRR varies with the group size M depending on

he uncertainty level and extract several interesting conclusions from

his variation. It is shown that there is not much sense in using more

han M = 15 experts in the decision making process because the rate

f decrease of PRR is already small for M > 15. We then address the

ssue of how PRR can be estimated from just the values of the pair-

ise comparison matrices P(m) obtained by the experts. Given this

nformation, we discuss a numerical method for estimating PRR based

n Monte Carlo simulation. The results indicate that for a sufficiently

arge group of experts, one can obtain a reasonable approximation to

he actual value of PRR.

The rest of the paper is organized as follows: In Section 2, we

riefly summarize the PWC method laying the theoretical founda-

ions for incorporating uncertainty and present the model used in

ur simulations. In Section 3, the results obtained when applying the

roposed model are presented and the convergence of the PRR is ex-

mined, considering the impact of various aspects which may affect

he estimation of probability of rank reversal, such as varying un-

ertainty level among the experts, alternative preference scales and

eight estimation methods. We also consider the case where the

udgments are determined in a fuzzy manner. In Section 4 a numer-

cal method is proposed in order to estimate the PRR from the actual

ser judgments. Finally, some concluding remarks are presented in

ection 5.

. Uncertainty modeling in PWC

In this section, we introduce the model used for incorporat-

ng uncertainty in the pairwise comparison matrices. Section 2.1
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provides a brief overview of the pairwise comparison framework,

while Section 2.2 considers the effects of uncertainty-induced per-

turbations under general assumptions. Section 2.3 details the uncer-

tainty model adopted in this paper. In Section 2.4 we describe how

we can estimate the probability of rank reversal through Monte Carlo

simulation.

2.1. The PWC framework

Within the PWC framework, instead of directly assigning priorities

to the various alternatives Ai with 1 � i � N, each expert compares all

possible combinations of Ai and Aj. The outcome of these judgments

for the mth expert are stored in a square N × N reciprocal matrix

P(m) =
[
P(m)

ij

]
, which will henceforth be referred to as a pairwise com-

parison matrix. The value of the element P(m)
ij

reflects the importance

of alternative Ai over Aj. The expert needs to complete only the up-

per triangular elements (i < j) of P(m) since by definition we have

P(m)
ij

= 1/P(m)
ji

and P(m)
ii

= 1 for a reciprocal matrix. The weights w(m)
i

of alternative Ai according to expert m can be calculated with various

ways. The most widely adopted approach is to solve the eigenvalue

problem P(m)x(m)
q = λ(m)

q x(m)
q , where λ(m)

q are the eigenvalues of P(m)

and x(m)
q =

[
x(m)

pq

]
are the corresponding eigenvectors. Assuming that

the eigenvalues are ordered so that λ(m)
1 is the largest eigenvalue, then

the weight of alternative Ai is estimated by normalizing the elements

of the principle eigenvector x(m)
1 as follows (Saaty, 2003):

w(m)
k

= x(m)
1k

[
N∑

l=1

x(m)
1l

]−1

(2)

In order to further simplify the comparisons, Saaty(2008) intro-

duced the nine-level scale shown in Table 1.

One way of measuring the inconsistency of a pairwise comparison

matrix is to calculate the Consistency Ratio (C.R.) defined as:

C.R. = C.I.

R.I.
(3)

In Eq. (3), C.I. is the Consistency Index which is estimated through:

C.I. = λ(m)
1 − N

N − 1
(4)

The denominator in Eq. (3) stands for the Random Index (R.I.) which is

an average random consistency index derived from a sample of ran-

domly generated reciprocal matrices with elements scaled according

to Saaty (2003) . Values of C.R. smaller or equal than 0.1 are generally

considered as acceptable and in this case, the matrix is said to be

nearly consistent (Saaty, 2003).

After all the comparisons have been completed, the average

weight wk for each alternative Ak is calculated by averaging out the

weights w(m)
k

obtained by the M experts,

wk = 1

M

M∑
m=1

w(m)
k

(5)
Table 1

The nine-level fundamental comparison scale.

P(m)
ij

Explanations

1 Ai and Aj are equally important

3 Ai is slightly more important than Aj

5 Ai is strongly more important than Aj

7 Ai is very strongly more important than Aj

9 Ai is absolutely more important than Aj

2, 4, 6, 8 Intermediate values

Reciprocals of above Used in analogous manner when Aj is more important

than Ai

o

fl

a

P

r

m

S

2

i

he weights wk determine the priorities of the alternatives and hence

he outcome of the PWC process. The method of estimating the

eights from the PWC matrices is by no means unique. In the next

ections we will also consider what happens when the weights are

stimated using the geometric mean method. We will also discuss

he situation where the pair wise judgments are carried out in a fuzzy

anner and the weights are calculated accordingly.

.2. First order perturbation analysis

Before proceeding to the description of the uncertainty model used

n this paper, it is useful to consider the impact of uncertainty in PWC

nder very general assumptions. From a theoretical standpoint, we

ay consider that uncertainty acts as a kind of “noise” that impairs the

airwise comparisons. We may think of P(m) as a perturbed version

f an initial N × N matrix A, i.e. P(m) = A + �P(m) where �P(m) =
�P(m)

ij
] is a random perturbation matrix, the magnitude of which is

elated to the level of uncertainty. Since the weights w(m)
k

are obtained

rom the perturbed principal eigenvector x(m)
1 of P(m), it is interesting

o consider how x(m)
1 is related to the principal eigenvector x1 of A.

ccording to Saaty and Vargas (1987), the first order variation �x(m)
1

f the principal eigenvector is determined by:

x(m)
1 = x(m)

1 − x1 =
N∑

j=2

(
υT

j
�P(m)x1

(l1 − lj)υT
j
xj

)
xj (6)

here υj and xj are the left and right eigenvectors of the initial pair-

ise comparison matrix A respectively while lj are the corresponding

igenvalues. Expanding the matrix products of Eq. (6) in terms of the

ndividual matrix and vector elements, it is revealed that the elements

f the perturbation vector �x(m)
1 = [�x(m)

1p ] are a linear combination

f the elements of the perturbation elements �P(m)
ij

. This fact has an

mportant bearing on the statistics of the perturbed weights: if one

ssumes that a sufficient number of the perturbations �P(m)
ij

are sta-

istically uncorrelated, then according to the Central Limit Theorem

CLT) (Rice, 1995), �x(m)
1p being a linear combination of statistically

ncorrelated variables, will approximately follow a Gaussian distri-

ution (provided that N is sufficiently large). The weights w(m)
k

are

ormalized versions of x(m)
1k

and we therefore expect that they will

lso approximately follow a Gaussian distribution. This can be de-

uced by considering the change δw(m)
k

in the weights w(m)
k

inferred

y the perturbations �x(m)
1p in the principle eigenvector. Using the fact

hat (α + �α)/(β + �β) � α/β + �α/β − (α/β2)�β for small �α
nd �β , one obtains from Eq. (2) an estimate for δw(m)

k
= w(m)

k
− Wk

s follows:

w(m)
k

∼= Wk

⎧⎨
⎩�x(m)

1k

x1k

− 1

C

N∑
j=1

�x(m)
1j

⎫⎬
⎭ (7)

here C = �lx1 l. The above equation suggests that since, as men-

ioned above, �x(m)
1p is a linear combination of �P(m)

ij
, the perturba-

ions δw(m)
k

will also be Gaussian. More importantly, the statistics

f the uncertainty perturbations �P(m)
ij

are expected to mainly in-

uence the variance of the Gaussian-like distributed weights w(m)
k

nd have smaller impact on their actual statistical behavior (e.g. their

DF). Furthermore the weights wk in Eq. (5) are the sum of w(m)
k

with

espect to m and the CLT again points out that wk will also be approxi-

ately Gaussian-distributed. We will numerically verify this claim in

ection 3.1.

.3. Description of the uncertainty model

The discussion of Section 2.2 already points out an intuitive way of

ncorporating uncertainty in the PWC matrices. Instead of assigning
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Fig. 1. L as a function of the perturbation strength s.
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fixed value for the elements P(m)
ij

we may assume that P(m)
ij

varies

andomly inside an interval [Dij, Uij] (Saaty & Vargas, 1987). In addi-

ion, if the experts carry out their comparisons according to Table 1,

hen the allowed values for P(m)
ij

should be discrete. A word of cau-

ion is in order here however: the length Uij − Dij of the interval

Dij, Uij] is not a suitable measure for the level of uncertainty. To il-

ustrate this, consider the intervals I1 = [1/9,1] and I2 = [1, 2] with

engths 1 − 1/9 = 8/9 and 2 − 1 = 1 respectively. Although I1 has a

maller length than I2, it is easy to see that it actually corresponds to

igher uncertainty level than I2 since there are nine distinct values of

able 1 (i.e. 1/9, 1/8, . . . , 1) that are located inside I1 while there are

nly two such values for I2. This points out that in order to quantify

he uncertainty level it is preferable to consider the number nij of

iscrete values contained in the interval rather than its length. In fact,

ince an interval with Dij = Uij corresponds to no uncertainty a more

uitable measure of the uncertainty level is nij − 1.

Based on the above observation we consider the following map-

ing of the values V of Table 1, into a set of integers u = q(V) with

8 � u � 8 such that:

(V) =
{

V − 1, V ≥ 1
1 − 1/V, V < 1

(8)

It is easy to show that the quantity q(Uij) − q(Dij) is equal to nij − 1.

lso, for the intervals I1 and I2 considered in the paragraph above,

his quantity is 9 and 1 respectively which indicates that indeed I1

orresponds to a much larger uncertainty level than I2. We also define

he inverse mapping q−1 of q such that q−1(q(V)) = V.

Another interesting question is how the boundaries Dij and Uij are

etermined in the first place. It is evident that since Dij and Uij can

ake a variety of values one can think of them as random variables

hemselves. One way of randomly selecting Dij and Uij is to start with

n initial nearly consistent matrix A = [Aij] and set

ij =
{

q(Aij)+ |�uij| , if q(Aij)+ |�uij| ≤ 8

8, otherwise
(9)

ij =
{

q(Aij)− |�dij| , if q(Aij)− |�dij| ≥ −8

−8, otherwise
(10)

here �uij and �dij are independent, uniformly distributed variables

nside [−s/2, s/2] with variance σ 2 determined by

2 = s2

12
=

〈
�u2

ij

〉
=

〈
�d2

ij

〉
(11)

Eqs. (9) and (10) ensure that the integers uij and dij remain within

he interval [−8, 8] and hence q−1(uij) and q−1(dij) correspond to

alues contained in Table 1. We can therefore choose the uncertainty

nterval boundaries according to:

ij = q−1(dij) (12)

ij = q−1(uij) (13)

Given samples of the randomly generated pairwise comparison

atrices P(m), it is interesting to relate the strength of the perturba-

ions s to the expected uncertainty level L =〈q(Uij) − q(Dij)〉= 〈nij〉− 1

hown in Fig. 1. Note that the mapping in Eq. (9) and (10) forces uij

nd dij to remain bounded inside [−8, 8] even if |�uij| is large. This

mplies that L is determined by both s and the value of q(Aij). Given the

alue of s, the corresponding value of L is estimated by Monte Carlo

imulations. The results are plotted in Fig. 1 which provides a means

f translating the value of L to the perturbation strength s and will be

sed in the realization of the uncertainty model described below.

.4. Estimation of PRR through Monte Carlo simulation

Taking into account the above discussion, we now proceed to de-

ermine how the probability PRR of rank reversal is related to the
ncertainty level L and expert group size M. Our approach is based

n Monte Carlo (MC) simulations. In each iteration k, we generate

matrix A(k), the elements of which are randomly chosen from the

alues of Table 1. If A(k) is not nearly consistent (i.e. C.R. > 0.1 accord-

ng to Section 2.1) then it is discarded and we recalculate A(k) until

his criterion is met. Given the value of L and the value of each ele-

ent A(k)
ij

of A(k), we use Eqs. (9) and (10) to estimate u(k)
ij

and d(k)
ij

by

enerating the random perturbations �d(k)
ij

and �u(k)
ij

. The strength

f the perturbations s is chosen based on the values of Fig. 1. Once
(k)
ij

= q(d(k)
ij

) and U(k)
ij

= q(u(k)
ij

) are determined, we generate a large

umber of PWC matrices (typically Nmatrix � 104) and distribute them

n NG = 	Nmatrix/M
 groups of M nearly consistent matrices P(ν) with

� ν � Nmatrix and where 	x
 stands for the largest integer which

s smaller than x. In the context of Section 2.2, the matrices P(ν) can

e assumed as a perturbed version of A(k) and the perturbation is

imply �P(ν) = P(ν) − A(k). For each of these NG expert groups we

alculate the priorities of the alternatives as discussed in Section 2.1.

e then estimate the number FG of groups for which the order of

riorities calculated is different than the order of priorities W ′
k

cal-

ulated by averaging out the weights obtained by all the matrices
(ν). The latter priorities corresponds to the order obtained by a very

arge (M = Nmatrix) group of experts and since Nmatrix is very large,

ne expects that W ′
k

are approximately equal to the ideal weights Wk

orresponding to the limit of infinite group of experts (M→�). The

robability of rank reversal for iteration k is then approximated as

RR(A(k)) � FG/NG. In the next iteration k + 1 we estimate a differ-

nt initial matrix A(k + 1) and estimate the probability of rank reversal

RR(A(k + 1)). The average probability of rank reversal (independent of

he choice of the initial matrix) is then calculated as

RR = 1

NMC

NMC∑
k=1

PRR(A
(k)) (14)

here NMC is the total number of MC iterations. It is interesting to

ote that one can estimate PRR for many different values of M using

he same random samples of the pairwise comparison matrices.

. Numerical analysis and results

In this section, we present the results obtained when we apply

he framework described above in Section 2. Section 3.1 presents

ome numerical results that further validate the first order analysis of

ection 2.2, while Section 3.2 examines the convergence properties

f PRR.

.1. Validation of first order analysis

To validate our first order analysis, as presented in Section 2.2, we

umerically calculate the PDF of a representative average weight w
k
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Fig. 2. PDF of the weight wk obtained by averaging the w(m)
k

, which are estimated through simulation. Also plotted is the Gaussian least squares fit. The uncertainty level is L = 3,

the number of experts is M = 10 and the number of criteria is (a) N = 4, (b) N = 6.

0.44 0.45 0.46 0.47
0

20

40

60

80

100

120

w
k

PD
F

N=4, M=40

MC(actual)
MC(first order)
Gaussian Fit

0.155 0.16 0.165 0.17
0

50

100

150

200

250

w
k

P
D

F

N=6, M=40

MC(actual)
MC(first order)
Gaussian Fit

(a) (b)

Fig. 3. PDF of the weight wk obtained in the case where M = 40. The rest of the parameters are the same as in Fig. 2.
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Fig 4. (a) PRR and (b) �PRR as a function of the expert group size for N = 3.
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obtained by a group of experts of size M. The PWC matrices of all ex-

perts are calculated as discussed in Sections 2.3 and 2.4 starting from

the same nearly consistent N × N initial matrix A with C.R. < 0.1.

The results are shown in Figs. 2 and 3, for the cases of M = 10 and

M = 40 experts, respectively, both for N = 4 and N = 6 criteria. 106

Monte Carlo (MC) iterations are used and we assume the case where

the uncertainty level L is equal to 3. The figure shows the PDFs ob-

tained using either the full weight calculation method outlined in

Section 2.1 and the first order approximation given by Eq. (6). Also

shown is the Gaussian fit to the former PDF (the Gaussian fit to the

latter case is practically the same). The figures illustrate that Eq. (6)

is indeed a valid approximation for the individual and hence the av-

erage weight perturbations. In addition, the average weights follow a

normal distribution in accordance to what has been discussed in the

previous paragraph. Similar results are obtained for the rest of the

weights as well as for other values of N, L and M. Fig. 3 shows the PDF

obtained for M = 40 starting from another initial matrix A.

The above discussion in Section 2.2 and the results of this section

highlight the fact that to a first order, other than determining the

mean value and standard deviation of the priorities wk, the statistics

of �P(m)
ij

should play a secondary role in the rest of the statistical

properties of wk (e.g. the shape of their PDF).

3.2. Convergence properties of the probability of rank reversal

3.2.1. Implementation of the PRR uncertainty model

Applying the uncertainty model discussed in Sections 2.3 and the

Monte Carlo simulation procedure in Section 3.1, we can calculate the

probability of rank reversal PRR, in order to estimate its dependence

on the expert group size M which is a key issue from a practical
oint-of-view, as discussed in the introduction. We first examine the

onvergence properties of PRR with respect to M, in the case of a

elative small number of alternatives (N = 3), taking into account a

ariety of uncertainty level values L. For each value of M, we performed

MC = 103 iterations and on each iteration we generated Nmatrix = 104

andom matrices. As indicated in Fig. 4(a), PRR is already low (below

percent) even for a group size as small as M = 10 for reasonable

alues of L. Another important conclusion drawn by the figure is that

he convergence speed of PRR is rather slow. For example, for L = 7,

RR changes from 6.8 percent to 3.5 percent when the number of

xperts is increased from 10 to 20, implying a small practical gain

rom increasing the expert group size, since PRR is already low for

= 10. The gain is even lower for smaller uncertainty levels. The

gure also illustrates that there is not much sense in increasing the

umber of experts beyond M = 15 since the reduction in PRR is even
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Fig. 6. (a) PRR and (b) �PRR as a function of the expert group size for N = 6.
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Fig. 8. (a) PRR and (b) �PRR as a function of the expert group size for different uncer-

tainty levels for each expert.
In order to examine the reliability of the estimated PRR values we

an calculate the confidence intervals. We first start with the statistics

f the values Pr for the probability of rank reversal PRR obtained by

unning multiple Monte Carlo iterations for a single value of M. If all

hese values are similar, we can deduce that our results are credible.

ig. 5 plots the PDF of the calculated PRR values obtained by their

istogram over NMC = 103 simulations for N = 3, M = 10 and L = 7.

ince the value of PRR in each simulation is calculated as the average

ver many independent realizations, the Gaussian PDF fits very well

ith the estimated PDF. We also notice that there are small variations

n the calculated PRR values (the PDF is practically non-zero from

.067 to 0.070). Since the statistics are Gaussian, we may also readily

alculate the confidence interval IC for a 95 percent confidence level.

sing standard confidence interval formulas (Hanke & Wichern, 2008)

e readily find that IC = [0.067, 0.068] and IC = [0.0179, 0.0180] in

he case where L = 7, N = 3, M = 10 and L = 1, N = 3, M = 10

espectively. These tight confidence intervals imply that the number

f iterations considered in the calculations of Figure 4 is adequate in

rder to accurately estimate the probability of rank reversal. Similar

esults are obtained when estimating the confidence intervals of other

oints in the graphs. For example for M = 40, L = 7, N = 3 we obtain

C = [ 0.0099, 0.01].

To further understand the convergence of PRR with respect to M,

e calculate the differential decrease �PRR(M) in the probability of

ank reversal when the group size is increased by �M = 1 expert:

�PRR(M)

�M
= |PRR(M + 1)− PRR(M)| (15)

In Fig. 4(b) we have plotted �PRR as a function of M. The figure

ndicates that even for L = 7, the changes in the probability of rank

eversal when an additional expert is added in the group are very

mall (below 1 percent per expert) at M = 15. It therefore makes little

ense of increasing the expert group size beyond that. This is also

hown in Fig. 4(a) where increasing M from 15 to 40 has very little

mpact from a practical point of view, since the additional number of

xperts only marginally reduces the uncertainty of the outcome.

Fig. 6(a) shows the values of PRR for the case where N = 6 alterna-

ives are pairwise compared, assuming the same uncertainty levels as

n Fig. 4. As expected, since the number of alternatives is now larger,

ne obtains higher values for PRR than in (may even exceed 20 per-

ent in some cases). Indicatively, for L = 7 the confidence intervals are

C = [0.22, 0.23] and IC = [0.0245, 0.0255] for M = 10 and M = 40 ex-

erts, respectively. Fig. 6(b) shows the corresponding values of �PRR

nd it is deduced that varying the size of the expert group is now

ore beneficial. For M = 10, PRR is reduced to about 18 percent when

he group size is increased by 1 in the case of L = 7. However, for

> 15, the gain becomes progressively smaller as a result of the slow

onvergence of PRR. Given the practical restrictions of increasing the
roup size, the figure suggests that using more than 15 experts may

ot have a strong bearing in the uncertainty of the results.

Fig. 7 illustrates the convergence of PWC for different values of

riteria N and a constant L = 3. We consider the cases where N = 2,

= 4 and N = 6. The model easily allows to consider cases where N > 6,

ut in actual situations, performing PWC with that many alternatives

ecomes impractical since the number of pairwise comparisons Nc

or each expert is given by Nc = N(N − 1)/2 and therefore scales as

(N2). As shown in the figure, PRR does depend on N: For a group size

f ten experts (M = 10), PRR � 6 percent when the experts are asked to

ake pairwise comparisons on six alternatives and this drops slightly

o 3.5 percent when the number of criteria is 6. Other than that, the

onvergence behavior of PRR does not seem dependent on the number

f criteria. In all cases, there is no significant gain in increasing the

roup size beyond 15. This is due to the slow convergence properties

f PWC, which seems to hold regardless the number of alternatives

sed and the uncertainty level.

Up to this point, we estimated PRR taking the same uncertainty

evel associated with each expert in the group. It is also interest-

ng to carry out this estimation when a different uncertainty level
(m) is assumed for each expert m. From a practical point-of-view,

his reflects what could happen when the level of expertise varies

rom participant to participant. Fig. 8(a) shows the values of PRR, as a
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Fig. 10. (a) PRR and (b) �PRR as a function of the expert group size for different L for

N = 6, for the case of GMM.
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function of the expert group in the case where the uncertainty level

L(m) is randomly selected with equal probability inside the integer

interval [1, 7]. The results are shown for N = 3 and N = 6. One obtains

similar convergence behavior to the previous case. Similar results

were also obtained if we calculate the differential decrease �PRR(M)

as shown in Fig. 8(b). The similar convergence behavior observed in

the case of varying uncertainty level can be explained taking into ac-

count the theoretical framework of Section 2.2, where we have shown

the statistical properties of the uncertainty perturbations other than

their mean value and standard deviation, are not expected to play

that big of a role in the statistics of the weight and hence of the PRR.

We therefore expect a change in the values of PRR but its convergence

behavior with respect to M should be more or less the same.

3.2.2. Alternative preference scales

The linear preference scale consisting of integers from one to nine

and their reciprocals shown in Table 1 is used quite often in appli-

cations of the PWC method. Saaty (1991) advocates this scale as the

best one to represent weight ratios. Nevertheless, it is interesting to

investigate the convergence properties of PRR considering alternative

preference scales such as the inverse linear or the logarithmic scale

(Ishizaka & Labib, 2011). Instead of the elements in Table 1, in the

former scale we use the elements 9/(10 − x) where x � {1, 2, . . . , 9}

as well as their inverses (10 − x)/9. The alternative scale {1/9, 2/9, . . . ,

1, . . . , 9/2, 9} can therefore be indexed in the same way as the scale

of Table 1 but with a different mapping q(V). The matrices can again

be chosen by randomly selecting the indices as before and applying

the alternative mapping. The elements of the logarithmic scale are

determined by logα(x + (α − 1)) where x � {1, 2, . . . , 9} and α > 1

and their inverses and can be again indexed in a similar way. In any

case, we may still use L as a measure of uncertainty.

Fig. 9(a) and (b) illustrates �PRR for the inverse linear and log-

arithmic scales, respectively in the case N = 6. For the logarithmic

scale we assumed a = 2 (Ishizaka, Balkenborg, & Kaplan, 2011). As

shown in Fig. 9, the convergence of �PRR is again slow, implying that

the convergence of PRR is similar even when an alternative prefer-

ence scale is used by the experts. From Fig. 9(a) and (b) one may

deduce that �PRR varies in a similar manner as before, again sug-

gesting that there is no significant gain in increasing the group size

beyond 15.

3.2.3. Weight estimation through the geometric mean method

Another important issue to consider is whether the results pre-

sented above depend on the weight estimation method. Instead of

estimating the weights w(m)
k

through the eigenvalue method (EM)

discussed in Section 2.1, one could also apply the Geometric Mean

Method (GMM) or equivalently the Logarithmic Least Square Method

(LLSM) (Saaty, 1990). This method attempts to fit the elements of the

pairwise comparison matrix P(m) with a perfectly consistent matrix,

i.e. a matrix whose elements are of the form w(m)
i

/w(m)
j

. The weights
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Fig. 9. �PRR as a function of the expert group size for different L for (a) inverse linear

and (b) logarithmic scales.
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re therefore determined by minimizing the following metric through

nconstrained nonlinear optimization:

GMM =
N∑

i,j=1

(
log P(m)

ij
− log

∣∣∣∣∣q(m)
i

q(m)
j

∣∣∣∣∣
)2

(16)

After the minimization is performed, we choose w(m)
i

= |q(m)
i

|/
j |q(m)

j
| to ensure that they are positive and sum up to one. In our

mplementation we use MATLAB’s fminsearch function which is based

n the simplex search method (Lagarias, Reeds, Wright, & Wright,

998).

Fig. 10(a) and (b) shows the values of PRR and �PRR for the case

f GMM, where N = 6 criteria are pairwise compared assuming sev-

ral uncertainty levels L. It is shown that for both low and high L,

ne obtains a similar convergence behavior for PRR and �PRR as in

he EM case. Comparing Fig. 10(a) and (b) with Fig. 6(a) and (b) re-

pectively one also deduces that the actual values of �PRR and PRR

re approximately the same implying that both weight estimation

chieve approximately the same credibility.

.2.4. Impact of fuzzy judgments

In this section we investigate the case where the experts carry out

heir comparisons in a fuzzy manner (Deng, 1999), i.e. by assigning

uzzy numbers in the elements of the pairwise comparison matrix

Chao Chung, 2011). A fuzzy number b̃ does not refer to one single

alue but rather to a connected set of possible values x centered

n b, each with its own weight ub(x) between 0 and 1. This weight

istribution is called a membership function. In the special case where

he membership function is triangular, then

b(x) =
⎧⎨
⎩
(x − l)/(b − l), l ≤ x ≤ b
(u − x)/(u − b), b ≤ x ≤ u
0, otherwise

(17)

here [l, u] is the range of values of x, in which the weight ub(x) is non-

ero. The triangular membership function in Eq. (17) is determined

y the triplet (l, b, u) which consequently completely determines the

uzzy number b̃.

To carry out fuzzy PWC, we need to define a fuzzy preference

cale where fuzzy numbers are used instead of precise numbers as in

conventional preference scale. The pairwise comparison elements

ill therefore consist of fuzzy rather than precise numbers. The scale

dopted can be a fuzzy extension of a conventional scale such as

he one in Table 1. The fuzzy scale adopted in this work consists of

he fuzzy numbers b̃ where b is an integer 1 � b � 9 and where
˜ = (b − 1, b, b + 1) if 2 � b � 8, 1̃ = (1, 1, 1) and 9̃ = (9, 9, 9). The

cale also contains the reciprocal elements of b̃ as defined in Chao

hung (2011) .

The procedure for the estimation of the fuzzy weights is based on

xtension principle theory (Gerla & Scarpati, 1998). Once the pair-

ise comparison elements (l(m)
ij

, b(m)
ij

, u(m)
ij

) are determined, we apply

constrained minimization procedure to estimate the fuzzy weights
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r(m)
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, w(m)
i

, e(m)
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) for each expert. The function to be minimized is

ritten as:

=
N∑

i=1

N∑
j=1

i �=j

⎧⎨
⎩

[
ln

r(m)
i

l(m)
ij

e(m)
j

]2

+
[

ln
w(m)

i

w(m)
j

b(m)
ij

]2

+
[

ln
e(m)

i

u(m)
ij

r(m)
j

]2
⎫⎬
⎭
(18)

The minimization constraints are outlined in (Wang, Elhag, &

ua, 2006). In our implementation we use MATLAB’s fmincon func-

ion which is based on the interior point algorithm (Waltz, Morales,

ocedal, & Orban, 2006). To calculate the average fuzzy weights

˜ i = (ri, wi, ei), we simply average the points of the individual mem-

ership functions, i.e. ri = M−1
∑

m r(m)
i

, wi = M−1
∑

m w(m)
i

and ei =
−1

∑
m e(m)

i
.

In order to incorporate uncertainty in this fuzzy extension of PWC,

e consider the following approach where the pairwise comparison

atrices of the experts are obtained again by randomly perturbing

n initial consistent pairwise comparison matrix A(k) in order to ob-

ain the matrices P(ν) as discussed in Section 3.1. Given P(ν) we then

onsider its fuzzy extension P̃(ν) with elements P̃(ν)
ij

= (l(ν)
ij

, b(ν)
ij

, u(ν)
ij

)

here b(ν)
ij

= P(ν)
ij

and I(ν)
ij

and u(ν)
ij

are determined according to the

uzzy scale as discussed above. From this point forward the simu-

ation procedure is the same as before except that the weights are

alculated by the minimization of Eq. (18) instead of the eigenvalue

ethod. In the context of fuzzy judgments, we assume that rank re-

ersal occurs whenever there exist at least two indices i, j for which

he ordering of the center or the upper edge of the corresponding

embership function changes compared to the one obtained by a

arge group of experts.

In Fig. 11(a) and (b) we show �PRR in the case of fuzzy judgments

s a function of the expert group size, for N = 3, N = 6 criteria respec-

ively. The figures illustrate that even in the case of fuzzy judgments,
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ig. 11. �PRR for fuzzy judgments as a function of the expert group size for different L

or (a) N = 3 and (b) N = 6.
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airwise comparison matrices. The rest of the figure explains how the credibility of the prop
he convergence of PRR is again slow. For N = 6, �PRR is smaller than

.01 for M > 15 even for large uncertainty levels indicating not much

ractical gain in further increasing the group size.

. Estimation of probability of rank reversal from actual

ser data

The previous analysis dealt with the impact of uncertainty in the

valuation of the priorities of the alternatives, quantified in terms of

RR. We now consider the issue of estimating PRR from actual user

ata, i.e. a relatively small number of pairwise comparison matrices
(m) obtained by a single expert group. In this section, we propose

numerical method to achieve this and validate our approach with

umerical simulations.

.1. Numerically evaluating PRR

Our scheme for evaluating the probability of rank reversal is de-

cribed in the dash line frame of Fig. 12. We first extract some in-

ormation on the statistical properties of the perturbations (step 2 in

ig. 12). One approach is to calculate the maximum and minimum

alues of P(m)
ij

with respect to m:

′
ij = max

{
P(m)

ij

}
, D′

ij = min
{

P(m)
ij

}
(19)

Another approach would be to map the elements P(m)
ij

to their

orresponding integers according to Eq. (8) and then estimate the

ean value μij and the standard deviation σ ij of q(P(m)
ij

) with respect

o m, i.e.

ij = 1

M

M∑
m=1

q
(
P(m)

ij

)
(20)

2
ij = 1

M

M∑
m=1

[
q
(
P(m)

ij

) − μij

]2

(21)

Assuming uniform statistics, Eqs.(19) and (20)–(21) are two al-

ernative methods for determining the statistics of the perturba-

ions. Once these statistics are identified, one can perform Monte

arlo simulations (step 3 in Fig. 12) to determine the probability

RR. In the first case, one generates a large number NPWC of random

airwise comparison matrices R( l) 1 � l � NPWC, the elements R(l)
ij

of

hich are uniformly chosen from [D′
ij
, U′

ij
]. Note that these matrices

o not correspond to pairwise comparison matrices filled out by any

ctual experts. Rather, they are random matrices numerically gener-

ted based on the information extracted by the limited set of user

atrices P(m). In the second case, one again generates the random

atrices R( l) assuming that R(l)
ij

follow a uniform distribution which is

etermined by the mean value μij and standard deviation σ ij. In any
Estimate 
PRR(Ak)
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R(l)

Estimate 
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from R(l)

1≤l≤Nmatrix
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proposed method for estimating the probability of rank reversal from a limited set of

osed estimation scheme can be verified by numerical simulations.
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Fig. 14. PRR and e(u) as function of the expert group size for L = 7 and (a) N = 3, (b)

N = 6.
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case the random matrices R( l) are distributed into 	NPWC/M
 groups

containing M matrices each. The probability of rank reversal can be

approximated by calculating the number of times for which the prior-

ities obtained by each of these groups is not the same as that obtained

by the initial weights wk (step 4 in Fig. 12). In order to distinguish be-

tween the two estimates we designate as P(minmax)
RR (Ak) and P(std)

RR (Ak)
the probabilities of rank reversal obtained by Eqs. (19) and (20)–(21)

respectively given the initial matrix Ak. One should note that if the

initial group size from which the data are gathered is infinite (M →
�), the two alternative methods for calculating R( l) are equivalent,

hence P(minmax)
RR (Ak) = P(std)

RR (Ak). However, in the case of finite M they

may provide a different estimate for PRR.

4.2. Results and validation

In order to validate the PRR estimation procedure we again resort

to Monte Carlo simulations as suggested by the rest of Fig. 12. In

each Monte Carlo iteration k, we calculate an initial matrix Ak and

estimate the intervals [Dij, Uij] as before (Section 3.1). We then gen-

erate the matrices P(m) where 1 � m � Nmatrix. We choose the first M

matrices P(m) where 1 � m � M to correspond to the user matrices,

while the rest of the matrices are to estimate the actual probability

of rank reversal PRR(Ak) which is obtained in the fashion explained in

Section 3.1. In accordance to what was discussed in Section 4.1, the

matrices P(m) where 1 � m � M are used to estimate either D′
ij

and

U′
ij

according to Eq. (19) or μij and σ ij according to Eqs. (20) and (21)

respectively. Afterward we generate the matrices R( l) and use them to

estimate P(minmax)
RR (Ak)and P(std)

RR (Ak)(steps 1 to 4 in the dotted portion

of Fig. 12 explained in Section 4.1). To measure the error introduced

by the aforementioned estimation methods, we calculate the error

function defined by

e(u)(Ak) =
∣∣∣P(u)

RR (Ak)− PRR(A
k)

∣∣∣ (22)

where u stands for either “minmax” or “std”. Averaging over many

possible of the initial matrices obtained in the different Monte Carlo

iterations, we can therefore obtain an estimate for the average error:

e(u) = 1

NMC

NMC∑
l=1

e(u)(Ak) (23)

Fig. 13(a) and (b) shows the values of e(std) and e(minmax) obtained

by the MC simulations as well as the probability of rank reversal PRR

obtained by the procedure outlined in Section 3, for L = 5 and (a) N = 3

and (b) N = 6. We see that the average error depends on the method

used for the estimation of the perturbation statistics. The values of

e(minmax) are higher than e(std) demonstrating that determining the

perturbation statistics through the mean value and standard devia-

tion is much better. This is in accordance with what was discussed

in Section 2.2 where the CLT was used to discuss the perturbation
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Fig. 13. PRR and e(u ) as function of the expert group size for L = 5 and (a) N = 3, (b)

N = 6.

d

“

tatistics. The statistical properties of the perturbed weights resem-

le those of a Gaussian distribution. In addition, according to the

LT, it is the mean value and the standard deviation that primarily

etermine this distribution rather than other measures like D′
ij

and
′
ij

used in the “minmax” method. We see that for N = 3, the “std”

ethod results in an average error of e(std) = 2 percent for M = 10

hich corresponds to less than half the value of PRR implying that

he method correctly estimates the order of magnitude of PRR which

s important in practical applications of the method. Similar observa-

ions are drawn in the case where N = 6, shown in Fig. 13(b) indicating

hat the method provides reasonable accuracy for increasing number

f alternatives. On the other hand, the “minmax” method produces

arger errors in the estimation of PRR and especially in the case where

= 6 produces errors which are larger than the value of PRR itself. It

s also interesting to investigate the accuracy of both methods under

n even greater uncertainty level. In Fig. 14(a) and (b) we show the

alues of e(std) and e(minmax) in the case where L = 7 again for N = 3 and

= 6 respectively. It is again deduced that the “std” method provides

ufficient accuracy when estimating the probability of rank reversal

hile the “minmax” approach leads to significant larger errors. Both

ethods however seem to provide a correct estimate regarding the

rder of magnitude of PRR.

Fig. 15 discusses the accuracy of the “std” approach for a group size

qual to M = 15 which according to Section 3, is a sufficient group

ize to estimate the priorities of the alternatives, given the limitations

f practical PWC applications. It is verified that e(std) is significantly

maller than PRR implying a tolerable error in the estimation of the

robability of rank reversal.

In the aforementioned results, the eigenvalue method was used

or the estimation of PWC weights. Nevertheless, it would be very in-

eresting to investigate the estimation of PRR from actual user data

pplying the Geometric Mean Method, as analyzed previously in

ection 3.2.3. Fig. 16 shows the values of PRR and e(u) for the case

here N = 3 criteria are pairwise compared assuming an uncertainty

evel L = 5. The results reveal that the values of PRR, estimated by

ctual user data, increasing the expert group size is more or less the

ame as mentioned before in the context of EM in Fig. 13(a). It is again

educed that the “std” method provides sufficient accuracy while the

minmax” approach leads to larger errors.
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Fig. 15. (a) e(std) and (b) PRR as a function of the uncertainty level for M = 15.
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.3. Impact of fuzzy judgments

It is also interesting to investigate the estimation of PRR from ac-

ual user data considering the representation of judgments by fuzzy

umbers, as discussed in Section 3.2.4. Toward this end, we apply the

cheme shown in Fig. 12 except that the matrices are now replaced

y their fuzzy extensions and the weights are calculated in a fuzzy

anner as discussed previously. Again the probability of rank rever-

al from actual user data can be estimated using both the “minmax”

nd “std” methods. The uncertainty model is modified in order to

ncorporate the fuzzy judgments in the opinion of experts when gen-

rating the matrices R( l), where the elements R(l)
ij

either are uniformly

hosen from [D′
ij

U′
ij
] for the case of “minmax”, or follow a uniform

istribution determined by the mean value μij and standard devia-

ion σ ij for “std” method. In Fig. 17 we show the values of e(std) and
(minmax) in the case where L = 5 and N = 6. Inspection of the results

epicted in the figure reveals that similar conclusions are drawn for

he estimation of PRR from actual user data in the case of fuzzy judg-

ents. It is obvious that applying either the traditional PWC or the

uzzy triangular representation of PWC judgments, the “std” method

revails against the “minmax” for the estimation of PRR from actual

ser data.

. Conclusions

In this paper, we applied an uncertainty model to address two

mportant issues concerning the probability of rank reversal in pair-

ise comparisons. The first issue concerned how this probability is

educed by augmenting the number of experts participating in the

urveys. The results dictate that there is not much to be gained by

ncreasing the number of experts beyond 15, even if uncertainty

evel is large. Using perturbation theory we have argued that the

onvergence of the probability of rank reversal with the number of

xperts is not crucially dependent on the uncertainty statistics. We

ave also shown numerically that the choice of comparison scale

nd weight selection method does not significantly affect the conver-

ence. The second issue concerned the problem of how the probability

f rank reversal can be estimated in practice, from the elements of the
airwise comparison matrices of a single expert group. Two alter-

ative methods have been discussed for extracting information on

he statistical behavior of the uncertainty-induced perturbations. It

as shown that one of them provides reasonable good accuracy and

an therefore be used in practical applications of the method for es-

imating the credibility of the outcome. Interestingly enough, this

onclusion holds under other situations such as fuzzy pairwise judg-

ents, alternative preference scales, weight estimation methods and

ccounting for a different uncertainty level for each expert in the

roup.
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